SunyaevZeldovich Detection Of Hot Intracluster Gas At Redshift 4.3

SunyaevZeldovich Detection Of Hot Intracluster Gas At Redshift 4.3
Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: analytic and numerical comparisons.Astrophys. J.495, 80–99 (1998).
Article
ADS
Google Scholar
Chiang, Y.-K., Makiya, R., Ménard, B. & Komatsu, E. The cosmic thermal history probed by Sunyaev–Zeldovich effect tomography.Astrophys. J.902, 56 (2020).
L. و & و Astrophys. – تفاصيل مهمة
Article
ADS
CAS
Google Scholar
Li, Q. et al. THE THREE HUNDRED Project: the evolution of physical baryon profiles.Mon. Not. R. Astron. Soc.523, 1228–1246 (2023).
Article
ADS
CAS
Google Scholar
Rohr, E. et al. The cooler past of the intracluster medium in TNG-cluster.Mon. Not. R. Astron. Soc.536, 1226–1250 (2025).
et و al. و the – تفاصيل مهمة
Article
ADS
CAS
Google Scholar
Mantz, A. B. et al. The XXL Survey. XVII. X-ray and Sunyaev–Zel’dovich properties of the redshift 2.0 galaxy cluster XLSSC 122.Astron. Astrophys.620, 2 (2018).
Article
Google Scholar
Gobat, R. et al. Sunyaev-Zel’dovich detection of the galaxy cluster Cl J1449+0856 atz = 1.99: the pressure profile in uv space.Astron. Astrophys.629, 104 (2019).
the و et و al. – تفاصيل مهمة
Article
Google Scholar
Di Mascolo, L. et al. Forming intracluster gas in a galaxy protocluster at a redshift of 2.16.Nature615, 809–812 (2023).
Article
ADS
PubMed
PubMed Central
Google Scholar
Miller, T. B. et al. A massive core for a cluster of galaxies at a redshift of 4.3.Nature556, 469–472 (2018).
a و of و et – تفاصيل مهمة
Article
ADS
CAS
PubMed
Google Scholar
Chapman, S. C. et al. Brightest cluster galaxy formation in thez = 4.3 protocluster SPT 2349-56: discovery of a radio-loud active galactic nucleus.Astrophys. J.961, 120 (2024).
Article
ADS
Google Scholar
Zhou, D. et al. A large molecular gas reservoir in the protocluster SPT2349-56 atz = 4.3.Astrophys. J. Lett.982, 17 (2025).
et و al. و in – تفاصيل مهمة
Article
ADS
Google Scholar
Chapman, S. C. et al. An overabundance of radio-AGN in the SPT2349-56 protocluster: preheating the intra-cluster medium. Preprint at https://arxiv.org/abs/2511.17814 (2025).
Sunyaev, R. A. & Zeldovich, Y. B. Formation of clusters of galaxies; protocluster fragmentation and intergalactic gas heating.Astron. Astrophys.20, 189 (1972).
ADS
Google Scholar
of و the و Chapman, – تفاصيل مهمة
Sunyaev, R. A. & Zeldovich, I. B. Microwave background radiation as a probe of the contemporary structure and history of the universe.Annu. Rev. Astron. Astrophys.18, 537–560 (1980).
Article
ADS
CAS
Google Scholar
Voit, G. M. Tracing cosmic evolution with clusters of galaxies.Rev. Mod. Phys.77, 207–258 (2005).
Article
ADS
CAS
Google Scholar
Article و ADS و CAS – تفاصيل مهمة
Wang, G. C. P. et al. Overdensities of submillimetre-bright sources around candidate protocluster cores selected from the South Pole Telescope survey.Mon. Not. R. Astron. Soc.508, 3754–3770 (2021).
Article
ADS
CAS
Google Scholar
Hill, R. et al. Megaparsec-scale structure around the protocluster core SPT2349-56 atz = 4.3.Mon. Not. R. Astron. Soc.495, 3124–3159 (2020).
Article
ADS
CAS
Google Scholar
Article و ADS و CAS – تفاصيل مهمة
McCarthy, I. G., Babul, A., Bower, R. G. & Balogh, M. L. Towards a holistic view of the heating and cooling of the intracluster medium.Mon. Not. R. Astron. Soc.386, 1309–1331 (2008).
Article
ADS
CAS
Google Scholar
Henden, N. A., Puchwein, E. & Sijacki, D. The redshift evolution of X-ray and Sunyaev-Zel’dovich scaling relations in the FABLE simulations.Mon. Not. R. Astron. Soc.489, 2439–2470 (2019).
Article
ADS
CAS
Google Scholar
Article و ADS و CAS – تفاصيل مهمة
Bennett, J. S., Sijacki, D., Costa, T., Laporte, N. & Witten, C. The growth of the gargantuan black holes powering high-redshift quasars and their impact on the formation of early galaxies and protoclusters.Mon. Not. R. Astron. Soc.527, 1033–1054 (2024).
Article
ADS
CAS
Google Scholar
Carlstrom, J. E., Holder, G. P. & Reese, E. D. Cosmology with the Sunyaev-Zel’dovich effect.Annu. Rev. Astron. Astrophys.40, 643–680 (2002).
Article
ADS
Google Scholar
Article و ADS و Google – تفاصيل مهمة
Mroczkowski, T. et al. Astrophysics with the spatially and spectrally resolved Sunyaev-Zeldovich effects. A millimetre/submillimetre probe of the warm and hot universe.Space Sci. Rev.215, 17 (2019).
Article
ADS
Google Scholar
Spacek, A., Scannapieco, E., Cohen, S., Joshi, B. & Mauskopf, P. Constraining AGN feedback in massive ellipticals with South Pole telescope measurements of the thermal Sunyaev-Zel’dovich effect.Astrophys. J.819, 128 (2016).
Article
ADS
Google Scholar
Article و ADS و Google – تفاصيل مهمة
Arnaud, M. et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and theYSZ–M500relation.Astron. Astrophys.517, 92 (2010).
Article
Google Scholar
Maughan, B. J., Giles, P. A., Randall, S. W., Jones, C. & Forman, W. R. Self-similar scaling and evolution in the galaxy cluster X-ray luminosity-temperature relation.Mon. Not. R. Astron. Soc.421, 1583–1602 (2012).
Article
ADS
Google Scholar
Article و Google و Scholar – تفاصيل مهمة
Planck Collaboration. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts.Astron. Astrophys.571, 20 (2014).
Article
Google Scholar
McDonald, M. et al. The remarkable similarity of massive galaxy clusters fromz ~ 0 toz ~ 1.9.Astrophys. J.843, 28 (2017).
Article
ADS
Google Scholar
Article و Google و Scholar – تفاصيل مهمة
Mostoghiu, R. et al. The Three Hundred Project: the evolution of galaxy cluster density profiles.Mon. Not. R. Astron. Soc.483, 3390–3403 (2019).
Article
ADS
CAS
Google Scholar
Marrone, D. P. et al. LoCuSS: the Sunyaev-Zel’dovich effect and weak-lensing mass scaling relation.Astrophys. J.754, 119 (2012).
Article
ADS
Google Scholar
Article و ADS و Google – تفاصيل مهمة
Bocquet, S. et al. Cluster cosmology constraints from the 2500 deg2SPT-SZ survey: inclusion of weak gravitational lensing data from Magellan and the Hubble Space Telescope.Astrophys. J.878, 55 (2019).
Article
ADS
CAS
Google Scholar
Bigwood, L., Bourne, M. A., Iršič, V., Amon, A. & Sijacki, D. The case for large-scale AGN feedback in galaxy formation simulations: insights from XFABLE.Mon. Not. R. Astron. Soc.542, 3206–3230 (2025).
Lucie-Smith, L. et al. Cosmological feedback from a halo assembly perspective.Phys. Rev.D.112, 063541 (2025).
D. و feedback و from – تفاصيل مهمة
Nagarajan, A. et al. Weak-lensing mass calibration of the Sunyaev-Zel’dovich effect using APEX-SZ galaxy clusters.Mon. Not. R. Astron. Soc.488, 1728–1759 (2019).
Article
ADS
CAS
Google Scholar
Andreon, S. et al. Witnessing the intracluster medium assembly at the cosmic noon in JKCS 041.Mon. Not. R. Astron. Soc.522, 4301–4309 (2023).
Article
ADS
CAS
Google Scholar
Article و ADS و CAS – تفاصيل مهمة
van Marrewijk, J. et al. XLSSC 122 caught in the act of growing up: spatially resolved SZ observations of az = 1.98 galaxy cluster.Astron. Astrophys.689, 41 (2024).
Article
Google Scholar
Remus, R.-S., Dolag, K. & Dannerbauer, H. The young and the wild: what happens to protoclusters forming at redshiftz ≈ 4?Astrophys. J.950, 191 (2023).
Article
ADS
Google Scholar
Article و Google و Scholar – تفاصيل مهمة
Aljamal, E. et al. Mass proxy quality of massive halo properties in the IllustrisTNG and FLAMINGO simulations: I. Hot gas.Mon. Not. R. Astron. Soc.544, 67–94 (2025).
Bassini, L. et al. The DIANOGA simulations of galaxy clusters: characterising star formation in protoclusters.Astron. Astrophys.642, 37 (2020).
Article
Google Scholar
Lim, S. et al. Is there enough star formation in simulated protoclusters?Mon. Not. R. Astron. Soc.501, 1803–1822 (2021).
et و al. و star – تفاصيل مهمة
Article
ADS
CAS
Google Scholar
Hlavacek-Larrondo, J. et al. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out toz = 1.2.Astrophys. J.805, 35 (2015).
Article
ADS
Google Scholar
Valentino, F. et al. A giant Lyαnebula in the core of an X-ray cluster atz = 1.99: implications for early energy injection.Astrophys. J.829, 53 (2016).
of و J. و in – تفاصيل مهمة
Article
ADS
Google Scholar
Cielo, S., Babul, A., Antonuccio-Delogu, V., Silk, J. & Volonteri, M. Feedback from reorienting AGN jets. I. Jet-ICM coupling, cavity properties and global energetics.Astron. Astrophys.617, 58 (2018).
Article
ADS
Google Scholar
Heckman, T. M. & Best, P. N. A global inventory of feedback.Galaxies11, 21 (2023).
& و M. و global – تفاصيل مهمة
Article
ADS
Google Scholar
Heckman, T. M., Roy, N., Best, P. N. & Kondapally, R. Mergers, radio jets, and quenching star formation in massive galaxies: quantifying their synchronized cosmic evolution and assessing the energetics.Astrophys. J.977, 125 (2024).
Article
ADS
Google Scholar
Rennehan, D., Babul, A., Moa, B. & Davé, R. The OBSIDIAN model: three regimes of black hole feedback.Mon. Not. R. Astron. Soc.532, 4793–4809 (2024).
R. و & و and – تفاصيل مهمة
Article
ADS
CAS
Google Scholar
Huško, F. et al. A hybrid active galactic nucleus feedback model with spinning black holes, winds and jets. Preprint at arxiv.org/abs/2509.05179 (2025)
Begelman, M. C. & Cioffi, D. F. Overpressured cocoons in extragalactic radio sources.Astrophys. J. Lett.345, 21 (1989).
Article
ADS
Google Scholar
F. و Huško, و et – تفاصيل مهمة
Nesvadba, N. P. H., Lehnert, M. D., De Breuck, C., Gilbert, A. M. & van Breugel, W. Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era”.Astron. Astrophys.491, 407–424 (2008).
Article
ADS
CAS
Google Scholar
Fabian, A. C. Observational evidence of active galactic nuclei feedback.Annu. Rev. Astron. Astrophys.50, 455–489 (2012).
Article
ADS
CAS
Google Scholar
Article و ADS و CAS – تفاصيل مهمة
Chadayammuri, U., Tremmel, M., Nagai, D., Babul, A. & Quinn, T. Fountains and storms: the effects of AGN feedback and mergers on the evolution of the intracluster medium in the ROMULUSC simulation.Mon. Not. R. Astron. Soc.504, 3922–3937 (2021).
Article
ADS
CAS
Google Scholar
Grayson, S., Scannapieco, E. & Davé, R. Distinguishing active galactic nuclei feedback models with the thermal Sunyaev–Zel’dovich effect.Astrophys. J.957, 17 (2023).
Article
ADS
CAS
Google Scholar
Article و ADS و CAS – تفاصيل مهمة
Altamura, E. et al. EAGLE-like simulation models do not solve the entropy core problem in groups and clusters of galaxies.Mon. Not. R. Astron. Soc.520, 3164–3186 (2023).
Article
ADS
CAS
Google Scholar
Gardner, A., Baxter, E., Raghunathan, S., Cui, W. & Ceverino, D. Prospects for studying the mass and gas in protoclusters with future CMB observations.Open J. Astrophys.7, 2 (2024).
Article
ADS
Google Scholar
Article و ADS و Google – تفاصيل مهمة
Vogelsberger, M. et al. The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations.Mon. Not. R. Astron. Soc.474, 2073–2093 (2018).
Article
ADS
CAS
Google Scholar
Huško, F., Lacey, C. G., Schaye, J., Nobels, F. S. J. & Schaller, M. Winds versus jets: a comparison between black hole feedback modes in simulations of idealized galaxy groups and clusters.Mon. Not. R. Astron. Soc.527, 5988–6020 (2024).
Article
ADS
Google Scholar
Article و ADS و Google – تفاصيل مهمة
Mantz, A. B. et al. The XXL Survey. V. Detection of the Sunyaev-Zel’dovich effect of the redshift 1.9 galaxy cluster XLSSU J021744.1-034536 with CARMA.Astrophys. J.794, 157 (2014).
Article
ADS
Google Scholar
Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters.Astron. Astrophys.594, 13 (2016).
Article
Google Scholar
Article و Google و Scholar – تفاصيل مهمة
Bushouse, H. et al. JWST calibration pipeline.Zenodohttps://doi.org/10.5281/zenodo.6984365 (2025).
Bradley, L. et al. Astropy/photutils: 2.0.2.Zenodohttps://doi.org/10.5281/zenodo.13989456 (2024).
Fujimoto, S. et al. ALMA census of faint 1.2 mm sources down to ~0.02 mJy: extragalactic background light and dust-poor, high-zgalaxies.Astrophys. J. Suppl. Ser.222, 1 (2016).
Article
ADS
Google Scholar
et و al. و Bradley, – تفاصيل مهمة
Fujimoto, S. et al. ALMA Lensing Cluster Survey: deep 1.2 mm number counts and infrared luminosity functions atz = 1–8.Astrophys. J. Suppl. Ser.275, 36 (2024).
Article
ADS
Google Scholar
Tazzari, M. Mtazzari/uvplot (v0.1.1).Zenodohttps://doi.org/10.5281/zenodo.1003113 (2017).
Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core atz = 2.506.Astrophys. J.828, 56 (2016).
a و Article و ADS – تفاصيل مهمة
Article
ADS
Google Scholar
Grishin, K. A. et al. Spectroscopic confirmation of the galaxy clusters CARLA J0950+2743 atz = 2.363 and CARLA-Ser J0950+2743 atz = 2.243.Astron. Astrophys.693, 1 (2025).
Article
Google Scholar
Travascio, A. et al. X-ray view of a massive node of the cosmic web atz = 3 II. Discovery of extended X-ray emission around a hyperluminous QSO. Preprint at arxiv.org/abs/2508.20074 (2025).
of و at و z – تفاصيل مهمة
Diemer, B. COLOSSUS: a Python toolkit for cosmology, large-scale structure, and dark matter halos.Astrophys. J. Suppl. Ser.239, 35 (2018).
Article
ADS
CAS
Google Scholar
Diemer, B. & Joyce, M. An accurate physical model for halo concentrations.Astrophys. J.871, 168 (2019).
Article
ADS
CAS
Google Scholar
Article و ADS و CAS – تفاصيل مهمة
Hill, R. et al. Rapid build-up of the stellar content in the protocluster core SPT2349-56 atz = 4.3.Mon. Not. R. Astron. Soc.512, 4352–4377 (2022).
Article
ADS
Google Scholar
Vito, F. et al. Fast supermassive black hole growth in the SPT2349–56 protocluster atz = 4.3.Astron. Astrophys.689, A130 (2024).
Article
CAS
Google Scholar
Article و Google و Scholar – تفاصيل مهمة
Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary Universe.Annu. Rev. Astron. Astrophys.52, 589–660 (2014).
Article
ADS
Google Scholar
Nusser, A., Silk, J. & Babul, A. Suppressing cluster cooling flows by self-regulated heating from a spatially distributed population of active galactic nuclei.Mon. Not. R. Astron. Soc.373, 739–746 (2006).
Article
ADS
CAS
Google Scholar
Article و ADS و Google – تفاصيل مهمة
Jennings, F. J., Babul, A., Davé, R., Cui, W. & Rennehan, D. HYENAS: X-ray bubbles and cavities in the intragroup medium.Mon. Not. R. Astron. Soc.536, 145–165 (2025).
Article
ADS
Google Scholar
Kondapally, R. et al. Cosmic evolution of radio-AGN feedback: confronting models with data.Mon. Not. R. Astron. Soc.523, 5292–5305 (2023).
Article
ADS
Google Scholar
Article و ADS و Google – تفاصيل مهمة
Venkateshwaran, A. et al. Kinematic analysis ofz = 4.3 galaxies in the SPT2349–56 protocluster core.Astrophys. J.977, 161 (2024).
Spilker, J. S. et al. Ubiquitous molecular outflows inz > 4 massive, dusty galaxies. II. Momentum-driven winds powered by star formation in the early Universe.Astrophys. J.905, 86 (2020).
Article
ADS
CAS
Google Scholar
Duan, X. & Guo, F. On the energy coupling efficiency of AGN outbursts in galaxy clusters.Astrophys. J.896, 114 (2020).
J. و in و the – تفاصيل مهمة
Article
ADS
Google Scholar
O’Dea, C. P. The compact steep-spectrum and gigahertz peaked-spectrum radio sources.Publ. Astron. Soc. Pac.110, 493–532 (1998).
Article
ADS
Google Scholar
Yamada, M., Sugiyama, N. & Silk, J. The Sunyaev-Zeldovich effect by cocoons of radio galaxies.Astrophys. J.522, 66–73 (1999).
The و radio و J. – تفاصيل مهمة
Article
ADS
Google Scholar
Bromberg, O., Nakar, E., Piran, T. & Sari, R. The propagation of relativistic jets in external media.Astrophys. J.740, 100 (2011).
Article
ADS
Google Scholar
Cen, R. Global preventive feedback of powerful radio jets on galaxy formation.Proc. Natl Acad. Sci. USA121, 2402435121 (2024).
R. و of و jets – تفاصيل مهمة
Article
MathSciNet
Google Scholar
Boselli, A., Fossati, M. & Sun, M. Ram pressure stripping in high-density environments.Astron. Astrophys. Rev.30, 3 (2022).
Article
ADS
Google Scholar
Astropy Collaboration. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package.Astrophys. J.935, 167 (2022).
M. و Astrophys. و (2022). – تفاصيل مهمة
Article
ADS
Google Scholar
Ginsburg, A. et al. astroquery: an astronomical web-querying package in Python.Astron. J.157, 98 (2019).
Article
ADS
Google Scholar
CASA Team. CASA, the common astronomy software applications for radio astronomy.Publ. Astron. Soc. Pac.134, 114501 (2022).
Astron. و Ginsburg, و A. – تفاصيل مهمة
Article
ADS
Google Scholar
Hunter, J. D. Matplotlib: a 2D graphics environment.Comput. Sci. Eng.9, 90–95 (2007).
Article
Google Scholar
Harris, C. R. et al. Array programming with NumPy.Nature585, 357–362 (2020).
Hunter, و J. و D. – تفاصيل مهمة
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
The pandas development team. pandas-dev/pandas: Pandas.Zenodohttps://doi.org/10.5281/zenodo.3509134 (2025).
Ginsburg, A. et al. radio-astro-tools/spectral-cube: v.0.4.4.Zenodohttps://doi.org/10.5281/zenodo.2573901 (2019).
Disclaimer: This news article has been republished exactly as it appeared on its original source, without any modification.
We do not take any responsibility for its content, which remains solely the responsibility of the original publisher.
Disclaimer: This news article has been republished exactly as it appeared on its original source, without any modification.
We do not take any responsibility for its content, which remains solely the responsibility of the original publisher.
Author: uaetodaynews
Published on: 2026-01-06 04:15:00
Source: uaetodaynews.com




